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Abstract: For the term paper we worked on understanding the paper titled ‘Algebraic

Spin Liquid in an Exactly Solvable Spin Model’ by Hong Yao, Shou-Cheng Zhang, and

Steven A. Kivelson [1]. The paper introduces a new exactly solvable half-integer spin model

on a square lattice whose ground state hosts an algebraic spin liquid. Our main focus was

to understand the solution of the spin model described in the paper. Our report presents

a self-contained (for an undergraduate student at our level) treatment of the properties of

the spin model and its solution. The solution of the model relies on techniques developed

by Alexei Kitaev while solving the his spin-1/2 model on a honeycomb lattice [2]. The

learnt a variety of techniques prevalent in condensed matter research like Majorana and

Dirac fermionisation, construction of gamma matrix models and basic lattice gauge theory.

We also learnt about two new collective excitations in visons and spinons which are present

in this model. In the end we worked with a symbolic manipulation software, SageMath,

to diagonalise the Hamiltonian. In our report we discuss all of the above ideas in a (self-

contained way) with the aim of obtaining the spectra of the Gamma Matrix Mdel (GMM).
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1 Introduction

In this section we present a brief overview of what are we going to do in the following

pages. The term paper that we selected for our project is slightly different from the most

in the sense that we are not really looking at a physical system or trying to model a

physical system directly. We rather look at a spin-3/2 system on a square lattice, with the

Hamiltonian written in terms of four dimensional representations of the Clifford algebra,

the gamma matrices. We do this to present an exactly solvable model for an algebraic spin

liquid. Now this algebraic spin liquid is a phase of matter that is experimentally observed

and the motivation to study this phase is that, it is this version of quantum spin liquid

that we find in many materials. Having an exactly solvable model allows us to probe the

properties of this phase in a toy model that may or may not be realisable. Because of this

nature of this paper in this section we introduce the phases of matter that have motivated

the construction of this model.

A Mott insulator is a phase of matter that defies conventional band theory. It is an

insulating phase even though the Fermi level is within the band. A simple and intuitive
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Figure 1. A schematic diagram of a quantum spin liquid on a triangular lattice. [3]

way of understanding a Mott insulator is through the Hubbard model. Consider a spin-1/2

system on a square lattice governed by the following Hamiltonian

H = −
∑
ij,σ

tijc
†
iσcjσ + U

∑
i

ni(ni − 1) (1.1)

this is the Hubbard model, where σ is the spin index and ni is the number operator on

the site i. The creation and annihilation operators obey the canonical anti-commutation

relations and t is the hopping parameter and U is the Coulomb energy-cost for occupying

the same site. Notice that for very large values of U/t on average there is only one electron

per site. Whereas for small values of U/t the electrons are completely delocalised and the

model describes a metal. Now as U/t is increased from zero, after a critical critical value

of U/t the model describes an insulator. A quantum phase transition has happened. This

is a quantum metal to insulator transition (MIT). The insulator obtained is called a Mott

insulator. They exist above the critical value of the U/t parameter of the model.

A quantum spin liquid is a phase of matter in which local spins are strongly correlated

but they still fluctuate even at very low temperatures (which might as well be absolute

zero). They are used to give a more sharp notion to the idea of a Mott insulator. Let us

try to understand what a spin liquid is and its behavior in an intuitive way. We will take

the example of a frustrated spin system as these systems provide a very simple and natural

way of demonstrating spin fluctuations.

Consider spin-1/2 particles on a triangular lattice with an interaction of the form
⃗S(i) · ⃗S(j) note that this operator attains its minimum value when the spins are anti-

aligned. So in the ground state we should have anti-ferromagnetic alignment. Except on

a triangular lattice that is not possible. All the three spins cannot be anti-aligned with

respect to each other. This forces the spins to be in an eternal state of fluctuations where
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they are sort of trying to anti-align but eventually cannot. Eventually the system forms

bonds which are just the superposition of up-down and down-up configuration of spins on

neighbouring sites and these bonds live along the lines joining the lattice sites. The bonds

are shown in blue color in the figure. If we excite one of the spins as shown in red color,

it can move across the lattice rearranging the bonds locally, such an excitation is called a

spinon. So we see that a quantum spin liquid is phase of matter that is characterised by

its short ranged spin correlation. However it should be noted that there are other phases

of matter that have short ranged spin correlation that are not quantum spin liquid. Also

there are Mott insulators that are not quantum spin liquids at low temperatures.

When the spectrum of the spinon excitation is gapless the phase is known as algebraic

spin liquid. The motivation to study these phases stem from their possible observation

in many materials. In this report we discuss one of the ways of studying this exotic

quantum phase of matter, through an exactly solvable spin model. The structure of the

report is as follows, we have already discussed the motivation for constructing an exactly

solvable model for an algebraic spin liquid. In section 2, we will describe our system and

write down its Hamiltonian in terms of Gamma matrices and discuss the symmetries of

the model. Then in section 3, we begin setting up the solution of the model, we first

implement a Majorana fermionisation procedure followed by a Dirac fermionisation, in

between we discuss the ways of constraining the extended Hilbert space of the system

obtained after Majorana fermionisation, we discuss the configuration of the ground state

sector of the Dirac fermionised Hamiltonian and claim that our model has a ground state

that is a quantum spin liquid. Once we know the ground state configuration and we have

the Dirac fermionised Hamiltonian in section 4, we diagonalise it and obtain the spectrum

of the system, upon analysing the spectrum we figure out the regime where the spectrum

is gapless and hence hosts an algebraic spin liquid. In the final section we summarise our

solution to give a bird’s eye view of the whole solution.

2 Gamma Matrix Model

The Gamma matrix model (GMM) is defined on a square lattice with a spin-3/2 on each

site. The model Hamiltonian is

H =
∑
i

(
JxΓ

1
iΓ

2
i+x̂ + JyΓ

3
iΓ

4
i+ŷ + J ′

xΓ
15
i Γ25

i+x̂ + J ′
yΓ

35
i Γ45

i+ŷ − J5Γ
5
i

)
(2.1)

where the Γ matrices are 4 × 4 representation of the Clifford algebra {Γa,Γb} = 2δab.

This representation is obtained by symmetric bilinear combinations of the components of

a spin-3/2 operator Sα. The Γ matrices are written explicitly in terms of Sα as follows

Γ1 =
1√
3
{Sy, Sz} Γ2 =

1√
3
{Sz, Sx} Γ3 =

1√
3
{Sx, Sy} (2.2)

Γ4 =
1√
3
[(Sx)2 − (Sy)2] Γ5 = (Sz)2 − 5

4
. (2.3)

Also, Γab = [Γa,Γb]/(2ι) and i in the subscript of the Γ matrices labels the lattice site at

ri = (xi, yi). The total number of spins on the site is N = LxLy where Lx and Ly are the
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Figure 2. A schematic of the model governed by the Hamiltonian in 2.1.

linear sizes of the lattice, which we will assume to be even. We will also impose periodic

boundary conditions.

2.1 Symmetries of the model

A few symmetries of the model are immediately clear from looking at the Hamiltonian.

1. The model respects translational symmetry. This is true because we have employed

periodic boundary conditions, changing i by i+nx̂ where n ∈ Z does not change the

Hamiltonian, because all the terms will be recovered once the sum is performed.

2. The model respects time-reversal symmetry (TRS). The action of TR operator is

flipping of spins. In the present Hamiltonian all the terms are either quadratic or

quartic in spin operators and hence upon spin-flip operation the negative sign cancels

out, leaving the Hamiltonian invariant.

3. GMM does not have SU(2) symmetry. Note that

[Sα,H] ̸= 0 (2.4)

because each term contain all the components of the spin-3/2 operator. Which im-

plies spin at each site changes in the dynamics of the Hamiltonian and hence the

Hamiltonian does not have SU(2) symmetry.

4. GMM does not even have U(1) symmetry. If the all the spins are rotated by the same

amount the components of the spin-3/2 operators change and consequently, H may

change.

5. Global Ising symmetry is present. If all the spins are rotated by π degrees about the

z-axis, the effective transformation on the Hamiltonian is changing the sign of Sx and

Sy, which renders the Hamiltonian invariant because H is quadratic in Sβ, β = x, y.
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3 Solving the GMM

In this section we attempt to solve the GMM using the ideas similar to the ones used by

Kitaev in solving his honeycomb model. We define a plaquette operator Ŵi on plaquette

i as follows

Ŵi = Γ13
i Γ23

i+x̂Γ
14
i+ŷΓ

24
i+x̂+ŷ. (3.1)

We immediately note that

[Ŵi, Ŵj ] = 0, (3.2)

this happens because plaquette operators are composed of components of spin-3/2 oper-

ators and these components on two different lattice sites commute among themselves. A

remarkable feature of the model that makes it solvable is an infinite set of conserved fluxes,

[Ŵi,H] = 0, (3.3)

this is also readily seen, H has only one term with contribution only from i−th site. Terms

with contribution other than that from the i− th site commute with Ŵi due to the reason

mentioned above. Now the only term on the site i contains Γ5, which is absent from the

definition of Ŵi and hence all the Γ matrices used to define the plaquette operator commute

with Γ5 as evident from the Clifford algebra. So the plaquette operator commutes with

the model Hamiltonian. The reason for calling the conservation of plaquette operator as

conservation of flux will be clear in the next sections where we upon fermionisation we will

see the emergence of Z2 gauge fields. Depending upon the values of these Z2 fields the

eigenvalues of the Hamiltonian will change.

3.1 Fermionisation Procedure

We fermionise the model either in terms of Dirac fermions or Majorana fermions. The

spin-3/2 operators can be expressed as bilinear forms of three flavours of Dirac fermions.

The operators are explicitly

Sz = a†a+ 2b†b− 3

2
(3.4)

Sx + ιSy = S+ =
√
3f †a+

√
3af + 2a†b. (3.5)

This fermionisation procedure is subject to the constraint that the physical states have odd

fermion parity, i.e., (−1)N̂ = −1, where

N̂ = f †f + a†a+ b†b (3.6)

is the number operator for the Dirac fermions (it gives the total number of Dirac fermions

of all the three flavours on each site). Instead of using this representation we will use the

Majorana fermion representation. It involves representing a spin-3/2 particle in terms of

six Majorana fermions. The Gamma matrices in terms of the six Majorana fermions are

given by

Γµ
i = ιcµi di Γµ5

i = ιcµi d
′
i Γ5

i = ιdid
′
i, (3.7)
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Figure 3. The transformation of each site upon Majorana fermionisation (right) and a represen-

tative plaquette of the whole system (left).

where cµi , µ = 1, 2, 3, 4, di and d′i are the six Majorana fermions on the site i. The

Majorana fermions form an eight dimensional Hilbert space. Which is enlarged from the

four-dimensional Hilbert space of an spin-3/2. To find the physical states we will need a

constraint on the states obtained from the fermionised Hamiltonian. Note that in terms of

spin-3/2 operators we have

Γ1
iΓ

2
iΓ

3
iΓ

4
iΓ

5
i = −1, (3.8)

for all the sites i. As a consequence we impose the following constraint on the physical

states |Ψ⟩ in terms of the Majorana fermions

Di |Ψ⟩ = [−ιc1i c2i c3i c4i did′i] |Ψ⟩ = |Ψ⟩ , (3.9)

in a later section we will construct a projection operator that will project the states in the

eight-dimensional Hilbert space of Majorana fermions to the physical subspace where the

above constraint is met.

3.2 The Majorana fermion Hamiltonian

In this section we make some remarks on the Hamiltonian written in terms of Majorana

fermions. We obtain the Hamiltonian by substituting the definition of Γ matrices in terms

of Majorana fermions (3.7) in the model Hamiltonian (2.1) written in terms of Γ matrices,

H =
∑
i

(
Jxûixιdidi+x̂ + Jyûiyιdidi+ŷ + J ′

xûixιd
′
id

′
i+x̂ + J ′

yûiyιd
′
id

′
i+ŷ − J5ιdid

′
i

)
(3.10)
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where ûix = −ιc1i c2i+x̂ and ûiy = −ιc3i c4i+ŷ. Note that,

[ûix,H] = 0 (3.11)

[ûiy,H] = 0. (3.12)

This follows from the fact that,

[ûix, ûiy] = 0 (3.13)

as they contain different flavours of Majorana fermions. (3.11) implies that ûiλ, λ = x, y

is a conserved quantity. We also have,

(ûiλ)
2 = 1 (3.14)

because (cµi )
2 = (di)

2 = (d′i)
2 = 0, this is in accordance with second quantisation as well

as the Clifford algebra followed by the Γ matrices. So the eigenvalues of ûiλ, uiλ = ±1.

As a consequence of this the enlarged Hilbert space of Majorana fermions can be divided

into sectors of definite uiλ. In each sector {u} the Hamiltonian will describe free Majorana

fermions of c-flavour and interacting Majorana fermions of d-flavour.

H({u}) =
∑
i

(
Jxuixιdidi+x̂ + Jyuiyιdidi+ŷ + J ′

xuixιd
′
id

′
i+x̂ + J ′

yuiyιd
′
id

′
i+ŷ − J5ιdid

′
i

)
(3.15)

Here, the uiλ’s are the emergent Z2 gauge fields. The Z2 gauge transformations are given

by

di −→ Λidi (3.16)

d′i −→ Λid
′
i (3.17)

uiλ −→ ΛiuiλΛi+λ (3.18)

where Λ = ±1. The identification of ûiλ as a Z2 gauge field is an artifact of its conservation

and eigenvalues being ±1.

The eigenstates of (3.10) live in the enlarged Hilbert space, these eigenstates can be

written as the direct product of eigenstates of (3.15) (|Ψ⟩d,d′) and the cµ-type Majorana

fermion states (|Ψ⟩c).
|Ψ⟩ = |Ψ⟩c ⊗ |Ψ⟩d,d′ (3.19)

The cµ fermion state is defined to be the eigenstates of the gauge field operator

ûiλ |Ψ⟩c = uiλ |Ψ⟩c . (3.20)

3.3 Degeneracy in the enlarged Hilbert space

The spectrum of H({u}) depends only on the following three gauge invariant quantities.

1. The flux on local plaquettes.

e(ιϕi) = uixui+x̂yuiyui+ŷx (3.21)
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2. And two global fluxes,

eιϕx =
∏

i(yi=1)

uix, (3.22)

eιϕy =
∏

i(xi=1)

uiy. (3.23)

Note that since uiλ = ±1, we have ϕi and ϕλ = 0, π. We also have,∑
i

ϕi = 0 (mod 2π). (3.24)

We demonstrate the correctness of (3.24) by considering different cases.

1. In case all the gauge fields take the value +1 or −1, all ϕi’s are identically zero, and

hence the above equality follows.

2. In case all the gauge fields but one has the same value, the odd gauge field will appear

on two of the local fluxes and the sum of fluxes over the lattice would be 2π. This

argument can be generalised to show that any gauge field would contribute to two

local fluxes and hence π-fluxes will always occur in pair.

3. In case the gauge fields have values such that all the fluxes are π, the sum is Nπ,

where N is the total number of lattice sites, which we have assumed to be even, once

again the equality holds.

As a consequence of (3.24), if we know the flux through N − 1 sites, the flux through the

N − th site is fixed. So there are only N − 1 independent local fluxes. Along with the

two global fluxes we get a total of N +1 independent fluxes. The total number of possible

flux sectors is thus 2N+1. Once we restrict ourselves to a specific flux sector {ϕ}, because
we have 2N Z2 gauge fields (two per site), the number of number of different gauge field

choices corresponding to a unique flux sector is

Gauge field combinations corresponding to each flux sector

Total number of possible fluxes
=

22N

2N+1
= 2N−1.

Since the spectrum only depends on the fluxes, these 2N−1 different choices lead to de-

generate eigenstates. Hence, in the enlarged Hilbert space the degeneracy of each state is

2N−1.

3.4 Projection to physical states

Most of the states in the enlarged Hilbert space of the fermionised Hamiltonian are not

physical, i.e., they do not satisfy (3.9). The physical states form a subspace of the enlarged

vector space. To obtain these physical states given an arbitrary state we construct a

projection operator, that projects any state out of the physical subspace to the physical
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subspace, while it leaves states in the physical subspace invariant. This is realised through

the following projection operator

|Φ⟩ = P̂ |Ψ⟩ =
∏
i

[
1 +Di

2

]
|Ψ⟩ . (3.25)

Where |Ψ⟩ is the unphysical state and |Φ⟩ is the physical state. The working of projection

operator is illustrated in the following remarks.

1. For a physical state |Ψ⟩, we have, Di |Ψ⟩ = |Ψ⟩ from (3.9). Consequently, P̂ |Ψ⟩ =
|Ψ⟩. Hence, the physical state is left invariant by the projection operator.

2. For an unphysical state |Ψ⟩, Di |Ψ⟩ = −1. Consequently, P̂ |Ψ⟩ = 0. So unphysical

states are annihilated by the projection operator. To understand why Di |Ψ⟩ = −1,

note that

[Di,H] = 0, (3.26)

which implies Di is conserved and,

D2
i = 1 (3.27)

which implies the eigenvalues of Di is ±1, now the states with eigenvalue +1 are

physical so the unphysical states are those with eigenvalue −1.

The explicit expression for the projection operator is

P̂ =

[
1 +

∑
iDi +

∑
i1<i2

Di1Di2 + · · ·+
∏

iDi

]
2N

. (3.28)

Note that Di acting on an eigenstate of (3.10) is equivalent to a gauge transformation on

the site i. So each of the terms in the explicit expression for P̂ is equivalent to a gauge

transformation on some subset of lattice sites. There is a small subtlety here, we know that

there are only 2N−1 in-equivalent gauge transformations, but the sum in (3.28) contains 2N

terms. We make sense of the subtlety in following way. We begin by noting that D =
∏

iDi

is a gauge transformation on each lattice site, thus it leaves all the gauge fields invariant.

So we factor P̂ in two terms, one containing D and the other containing all in-equivalent

gauge transformations (P ′),

P̂ = P ′ (1 +D)

2
. (3.29)

We can do this factorisation and have P̂ do the same job as before because D shares the

same properties as Di, as it is a product of Di’s, namely the following properties hold for

D,

[D,H] = 0 (3.30)

D2 = 1 (3.31)

D |Ψ⟩ = ± |Ψ⟩ . (3.32)
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So re-writing P̂ in (3.28) has helped us appreciate the subtlety. The part of P̂ which

contains all the in-equivalent gauge transformations is responsible for mapping a physical

state to the equal weight linear superposition of all in-equivalent gauge transformations

acting on the physical state. Now there is another class of states that are annihilated by

P̂ .

To classify states that are annihilated by P̂ , we fermionise the two d-flavour Majorana

fermions at each site to one f -flavour Dirac fermion at each site. We define the Dirac

fermions as follows

fj = ιj
dj + ιd′j

2
. (3.33)

We can write D explicitly in terms of gauge fields and d-flavour Majorana fermions as

D =
∏
i

[ûixûiy]
∏
i

[ιdid
′
i]. (3.34)

The first factor ∏
i

[ûixûiy] = (−1)N̂ϕ (3.35)

where N̂ϕ is the number of π-fluxes through one of the two sublattices. The two sublattices

refer to the two subset of sites that interact among themselves but not with each other.

The product in (3.35) contains half the total fluxes on local plaquettes. These half of the

fluxes correspond to all the fluxes on one of the sublattices. Now the choice of sublattice

is not important because the total number of π-fluxes is even. We only count the number

of π-fluxes because the contribution due to 0-fluxes is identity so it does not affect the

operator D.

The second factor ∏
i

[ιdid
′
i] = (−1)N̂f (3.36)

where N̂f =
∑

i f
†
i fi is number operator for the Dirac fermions. Note that because we have

even number of lattice sites, the number of Dirac fermions is conserved (mod2). We write

the d-flavour Majorana fermions in terms of Dirac fermions using (3.33)

di =
fj + (−1)jf †j

ιj
(3.37)

d′i =
fj − (−1)jf †j

ιj+1
(3.38)

substituting this in (3.36) and noting that

{fi, fi} = 0 (3.39)

{f †i , f
†
i } = 0 (3.40)

{f †i , fi} = 1 (3.41)

we obtain
∏

i[ιdid
′
i] = (−1)N̂f . As the terms containing only the creation and only the

annihilation operators vanish. Both (3.36) and (3.35) together imply that

D = (−1)N̂ϕ+N̂f . (3.42)
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Figure 4. A representative plaquette with π-flux and a section of the lattice in π-flux ground state.

This relation give us a lot of insights on physical states. For example, consider the case

where there is π-flux through each plaquette, in this case N̂ϕ is even and hence physical

states are those with even Dirac fermionic parity. In contrast in case an odd number of π-

fluxes are present on the sublattice, the physical states have odd number of Dirac fermions.

Note that since D is conserved the fermion number parity is conserved, this tells us that

the fermionic excitations are created by non-local operators.

3.5 π-flux states and gapped visons

In a given flux sector {ϕ} the lowest energy of the Hamiltonian Eo({ϕ}) can be obtained

minimizing the energy Eo({ϕ}) with respect to {ϕ}. The formal approach to this is done

by deriving an effective action for the whole system by integrating over all fermions. But

deriving it for such large system is quite non-trivial. Hence, for our system, one of Lieb’s

theorem comes to rescue.

3.5.1 Lieb’s theorem and ground state

Before directly jumping into the theorem, let us first understand what does a bipartite

lattice means. A bipartite lattice is one which can be expressed as sum of two sub lattices

such that each site of a given sub lattice is connected only to the sites of other sub lattice.

Lieb’s Theorem states that the energy minimizing flux sector of a half-filled band of electron

hopping on a planar bipartite lattice is the π-flux sector. Where a half filled band is one

which we get when the no. of electron is half the number of available states. For example,

consider the case when we have a lattice with N sites and each site contributes one electron.

If we consider the the spin of electron then the no. of available states in the Brillouin zone
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Figure 5. Vison excitations and the demonstration of creation of visons as an action of spin

operators.

are 2N but the number of available electrons are only N and hence out states are half

filled.

Coming to our case, the system we are studying, consists two Majorana fermions, d

and d′ hopping on a bipartite square lattice with a interaction term (governed by J5). Each

site contributes one type of Majorana fermion. Now, If we set J5 = 0, then our system

Hamiltonian comprises of only hopping terms and then we can apply Lieb’s theorem to our

system.. Using, Lieb’s theorem we conclude that the ground state for our system is the

π-flux sector i.e. all the plaquettes have π flux.

Now, we define, Z2 vortex excitations, ‘visions’ as the plaquettes with ϕi = 0. This

will happen if for a given square plaquette we get all four uiλ gauge fields to have same

value or +1 and −1 in pairs. A vortex can be visualised as shown in figure below. To

understand a vortex excitation let us consider the π-flux sector with the following gauge

fields, uix = 1 and uiy = (−1)i. Now, if you take one uiy and change it from −1 to 1 then

we get two visons as shown in the figure.

Now, due to the constraint Σiϕi = 0 (mod 2π), we will always get visions in pairs.

Now, as [uiλ,H] = 0 the visons we get are non-dynamical in nature. The minimum energy

required to get a vision excitation is finite an given by

∆ν ∼
(√

|JxJy|+
√∣∣J ′

xJ
′
y

∣∣) . (3.43)

Since the visions are gapped, if we slightly change J5 following the condition, 0 < J5 << ∆ν ,

we will still remain in the π-flux sector. Now, for rest of the report we will focus our study

on spinon (spin excitation) in the π-flux sector regime.
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3.6 Spin correlations

The ground state i.e. the π-flux sector in which we have uniform π-flux, has transla-

tional symmetry because shifting the whole lattice by each plaquette leaves the whole flux

distribution across the lattice invariant. The above state also shows time-reversal symme-

try. Time reversal operator performs following transformation, uiλ → uiλ. On performing

these transformation the overall flux through each plaquette remains invariant and hence

the state has time-reversal symmetry.

To show that the system is a spin liquid we need to show that the spin-spin correlation

are short ranged and hence there is no magnetic ordering. As described above, the spin-

3/2 operator can be written as bilinear forms of Majorana operators, for example, Sz
i =

ic3i c
4
i + ic1i c

2
i . Therefore, the spin operator Sα

i either creates or annihilates bond-fermions

(ci fermions) at site i and hence the the gauge field undergoes following transformation

uiλ → −uiλ. As a result, the flux through neighbouring four plaquettes changes. Now,

if we go on calculating the spin-spin correlation given as ⟨ψ|Sα
i S

β
j |ψ⟩, we get it to be

non-zero for neighbouring i and j sites and zero for all other cases, because only in the

neighbouring case the gauge field returns to the same value and hence a non-zero inner

product of the states. Such a nature of correlation function shows that indeed spin-spin

interaction is short ranged and hence our model is a spin-liquid.

4 Gapless fermions

To obtain the excitation spectrum in the π-flux sector, which is also the ground state

sector, we fix the gauge by choosing uix = 1, uiy = (−1)i. This ensures that the fluxes on

all the local plaquette is π. The Hamiltonian in terms of free Dirac fermions is obtained

by substituting (3.37) in (3.15).

H0 =
∑
i

(
txf

†
ufi+x̂ + ty(−1)if †i fi+ŷ − J5f

†
i fi −∆x(−1)if †i f

†
i+x̂ −∆yf

†
i f

†
i+ŷ + h.c.

)
(4.1)

where tλ = Jλ + J ′
λ and ∆λ = Jλ − J ′

λ. This is a tight-binding nearest neighbour interac-

tion Hamiltonian for Dirac fermions. This describes a p-wave superconductor of spinless

fermions.

4.1 Spinon excitation spectrum

We go to the momentum space to get the spectrum as a function of the wavevector. We

do this by writing the Hamiltonian in its Fourier space using the definition of Bloch states,

fk =
∑
i

exp(−ιk · ri)
fi√
N
. (4.2)

The Hamiltonian in the Fourier space is given by

H0 =
∑
k

Φ†
kHkΦk (4.3)
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Figure 6. The quantum phase diagram of the GMM in the uniform π-flux ground state sector.

(Note that the band diagrams are not exact but representative.)

where Φ†
k =

(
f †k, f

†
k+Q, f

†
−k, f

†
−k−Q

)
, is the Bloch basis vector. Note that Q = (π, π) is the

reciprocal lattice vector, and due to the translational symmetry of the model, because of

which k is equivalent to k+Q, the sum in (4.3) is performed over half the Brillouin zone.

The model also have time reversal symmetry, i.e., Hk = H−k. The translational and the

time reversal symmetry allows us to easily compute the matrix form of Hk.

H =


2tx cos kx − 2J5 2ιty sin ky 2ι∆y sin ky 2∆x cos kx
−2ιty sin ky −2tx cos kx − 2J5 −2∆x cos kx −2ι∆y sin ky
−2ι∆y sin ky −2∆x cos kx −2tx cos kx + 2J5 −2ι∆y sin ky
2∆x cos kx 2ι∆y sin ky 2ιty sin ky 2tx cos kx + 2J5

 (4.4)

The eigenvalues of the matrix gives the quasiparticle spinon excitation spectrum.

E±,k = 2

√
J2
5 + 2g+,k ± 2

√
g2−,k + J2

5gk (4.5)

Where,

g±,k = (J2
x ± J ′2

x ) cos2 kx + (J2
y ± J ′2

y ) sin2 ky, (4.6)

gk = (Jx + J ′
x)

2 cos2 kx + (J2
y + J ′

y)
2 sin2 ky. (4.7)

In the following sections we study the model in different regimes of the interaction

parameter strengths.
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4.2 The J5 = 0 regime

In this case we have,

E+,k = 4
(
J2
x cos

2 kx+ J2
y sin

2 ky
)1/2

, (4.8)

E−,k = 4
(
J ′2
x cos2 kx+ J ′2

y sin2 ky
)1/2

. (4.9)

Both the spectra is gapless. Around the Dirac points the spectrum is linear in momentum,

so the spinon excitation are massless Dirac fermions.

4.3 The 0 < J5 <<∆v regime

This is the regime where the J5 is non-zero but very small compared to the vison gap

energy ∆v. In this regime the ground state lies in the π-flux sector as discussed above.

The features of the spectrum in this regime is as follows

1. E+,k is always gapped as J5 > 0.

2. E−,k may be gapped or gapless depending on the values of Jx, Jy and J ′
x, J

′
y. The

condition for gapless excitations are,

JxJ
′
x cos

2 kx + JyJ
′
y sin

2 ky =
J2
5

4
, (4.10)(

JxJ
′
x − JyJ

′
y

)
cos kx sin ky = 0. (4.11)

3. In the regime Jx, Jy >> J5 > 0, where J5 << ∆v is satisfied for arbitrary J ′
x and J ′

y.

We have the following features in the phase diagram of the model as a function of J ′
x

and J ′
y.

(a) When

J ′
x >

J2
5

4Jx
, J ′

y >
J2
5

4Jy
,

J ′
x

J ′
y

̸= Jx
Jy
,

the fermion spectrum has eight Dirac nodes.

(b) When

J ′
x >

J2
5

4Jx
, J ′

y <
J2
5

4Jy
,

there are four Dirac nodes.

(c) When

J ′
x <

J2
5

4Jx
, J ′

y >
J2
5

4Jy
,

once again there are four Dirac nodes but at different locations than in the

previous case.
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(d) When

J ′
x <

J2
5

4Jx
, J ′

y <
J2
5

4Jy
,

there are no Dirac nodes, all the spinon excitations are gapped in this case. In

this regime, the gapless spinon excitations, if they exist are stable in the sense

that any weak translational and time reversal invariant perturbation only shifts

the positions of the nodes but not its topology. Consequently the present phase

with Dirac nodes is characteristic of a stable quantum phase of matter, i.e., the

current phase is an algebraic spin liquid.

5 Conclusion

Now that we have obtained the spectrum and the energy phase diagram of the model it is a

good time to take a look back and summarise what we did, why did we need the projection

operator, why care about gauge fields, why not write the Dirac Hamiltonian first up! All

of these questions would hopefully be answered in the following concluding (summarising)

remarks.

1. First of all we wrote the Hamiltonian for the GMM using four dimensional repre-

sentations of the Clifford algebra. A natural question to ask, after all the analysis

upon which we realise that the model that is actually easy to solve is the Majorana

fermionised one, is why not start with the Majorana fermionised model and solve

it, why bother with the GMM? The Majorana fermionised model also has the added

advantage of having a clear physical interpretation in terms of nearest neighbour Ma-

jorana fermion-fermion interaction. The answer lies in the fact that construction of

Majorana fermionised model would be difficult given the enormous number of com-

binations the nearest neighbour interactions may be present in the model owing to

the presence of large number of Majorana fermions at each lattice site. Also while

making spin models one of the first constraining arguments is that of symmetries of

the system and these symmetries are more evident and easy to enforce in spin models.

2. Once we wrote the model Hamiltonian the symmetries of the system became evident

immediately. Apart from the traditional symmetries like translational and Ising the

model also an infinite set of conserved fluxes. It is this infinite set of conserved

quantity that renders the model solvable. We exploited these symmetries in finding

the flux sector of the ground state. This also shows why writing the spin Hamiltonian

gives more insights about the system. We know how to solve spin models with an

infinite set of conserved fluxes from Kitaev’s analysis, one would like their model to

have these symmetries and it is easy to include them while writing the Hamiltonian

in terms of spin operators.

3. This infinitely many conserved fluxes motivate us to attempt to use Kitaev’s approach

to solve our system. And so we fermionise the model using six Majorana fermions.
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We have to use six Majorana fermions because we have a spin-3/2 system. The

fermionisation procedure leads to the extension of the Hilbert space of the system.

In the new extended Hilbert space we notice one nice and one rather disturbing

feature.

(a) The nice feature is that among the six Majorana fermions four are present

in the fermionised model with no interaction among themselves of with the

other two. While the remaining two Majorana fermions have nearest neighbour

interactions.

(b) And the annoying feature is that a large number of degeneracy is present in the

enlarged physical space. This is annoying because all our (perceived) progress

seems to be useless. The problem remains as difficult as in the beginning.

4. The problem of large number of degeneracy is solved by a smart construction of

an operator that acts on states in this enlarged Hilbert space. The action of this

projection operator is to project unphysical states to physical states. It does so by

constructing a linear combination of unphysical states such that the combination

satisfies our definition of physical state.

5. We find that the projection operator obtains a rather simple form when we Dirac

fermionise the Majorana fermionised Hamiltonian. The structure of the Hamiltonian

also gives us many constraints on the kind of states that we can observe. These

constraints manifest as fermionic parity and kind of fluxes present on the lattice

plaquettes. To obtain the ground state sector, we state a theorem by Lieb. We do

not get into the details of Lieb’s theorem because of the nature of his original paper

that uses ideas from graph theory. We briefly discuss the configuration of the ground

state from various considerations and motivate it physically. We also see that the spin

correlations for the model are short ranged. In fact they are only nearest neighbour.

We could have computed this quantity numerically for various interaction parameter

by due to the requirement of computational resources could not do so.

6. Once we had all the above constraints on the ground state. We finally write the

Hamiltonian in its matrix form and attempt to diagonalise it in k-space. We analyse

the obtained spectrum in the regime where the spinonic excitations are present but

the vison excitations are not present. We already know at this point that the ground

state is a quantum spin liquid due to short-ranged spin-correlation. Upon further

analysis we obtain a region where the spinon excitations are gapless. This is what

we set out to achieve, such a state is what we call an algebraic spin liquid.

The GMM has other nice properties that we did not have the time and skills to look into,

these include the behaviour along the critical line in the phase diagram and the behaviour

of the system in the presence of vison excitations.
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