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In this course project, we study the Kitaev chain using tensor network methods. In
particular, we are interested in computing four-point spin correlation functions that
are relevant for experiments. In this report, we provide a brief review of the tensor
network methods used, an exact solution of the Kitaev chain, a basic introduction to
Resonant-Inelastic X-ray scattering (RIXS), and finally, we present our results where
we compute the RIXS spectra for the Kitaev chain using four-point and two-point

correlation functions.
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I. INTRODUCTION

Kitaev-type models are rich in physics and applications. They support Majorana modes
that can be used for topological quantum computation. They are also examples of exotic
phases of matter like quantum spin liquids, and they also have a bulk-edge correspondence,
which highlights the applications of topology in condensed matter physics. Experimental
verification of such models remains somewhat ambiguous. Few experimental techniques
allow us to probe the collective excitations of such systems in a broad energy range. Our
motivation in this project is to compute the expected RIXS spectrum of a material described
by the Kitaev chain. The actual goal was to study the density matrix renormalization group
algorithm. As an application, we chose to study the Kitaev chain. We further computed
dynamical correlation functions using time evolution methods beyond DMRG.

In sections II, I11, IV, and V, we present a brief and self-contained review of the numerical
methods that we use. We begin in section II with an introduction to matriz product states
(MPS) and their properties, then in section 111, we discuss the density matriz renormalization
group (DMRG) algorithm as a variational algorithm over MPS to find the ground state of

one-dimensional Hamiltonians, after this in sections IV and V we discuss time-evolving block



decimation (TEBD) and time-dependent variational principle (TDVP) algorithms for time
evolution of MPS, respectively. In these sections, we will follow the standard notations and
presentations provided in [1], [2], [3], [4], and [5].

In the rest of the report, in section VI we describe the model we study, the Kitaev chain
and present an exact solution using Jordan-Wigner transformation. In section 1, we briefly
discuss the Resonant Inelastic X-ray scattering experiment and the theory relating the RIXS
spectrum to correlation functions. We then present the results of our simulations and their
interpretation. In the appendices, we provide all the codes used to do the simulations and

discuss the numerical technicalities of our simulation.

II. MATRIX PRODUCT STATES (MPS)

Consider a spin-S model that has N-sites; the local Hilbert space at each site is S(S +
1) = L dimensional. Consequently, the resulting Hilbert space for the entire system is LY
dimensional. The time complexity of exact diagonalization of such Hamiltonians is O(L3Y)
while the space complexity is O(L?*"). Consequently, exact diagonalization is simply not
possible when N is large. In fact, the best computers can only go as far as N = 32 for
spin-1/2 systems (where the local Hilbert space is 2-dimensional). The most general state

of such a system may be represented as,

W)= D oy o) (1)

iy Ty
here, |o;, -+ 0y,) is the direct product of local states at each site and ¢~ is an N-
rank tensor with L" scalar components (the coefficient tensor). The approximation schemes
for computing the spectrum of many-body Hamiltonians involve reducing to a subspace
of the original Hilbert space. Which means we assume a simple form for the coefficient
tensor, for example in the mean field approximation we assume that the coefficient tensor
factorizes, ¢7i1%in ~ ¢%i1 - .. %~ | so the number of unknowns reduce from LY to LN. This
factorization implies that the produced state has no entanglement. When we are interested
in states with entanglement, we have to look at MPS here. The idea is to decompose the
coefficient tensor in terms of N rank-3 tensors as follows,
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For a specific set of states, we use a single matrix per site, hence the name matriz product
states. Its bond dimension is the index m; for a matrix MJU 7. The usefulness of MPS lies
in its ability to represent lowly entangled states with low bond dimensions. With arbitrary

high bond dimensions, any state can be written as an MPS.

A. Matrix Product Operators (MPO)

To work with MPS, it is convenient to define analogous operators expressed in terms of

matrix products called MPOs. A general operator on the Hilbert space is,

A — Z RO O |03, -+ i) <0-z{1 . JZ’,N , (3)
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where the coefficient tensor can be expressed as a product of N rank-4 tensors as follows,
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This expression for an operator gives the operator a natural action on an MPS.

B. Tensor Network Notation

Writing all the indices for matrices in MPS and MPO is very cumbersome. To sim-
plify our lives and better understand the equations in the following sections, we will work
with Penrose’s tensor network representation. This is a pictorial representation of tensor

manipulations that is very helpful when working with tensor networks.

1. A tensor is represented as a figure (in our report, we will use a square, circle, or
triangle) with legs (the lines coming out of the circle); the legs represent the tensor

indices.
Aijkl — (5)

The above example is of a 4-rank tensor. For a n-rank tensor, n-legs will come out of

the figure.



. Contraction of indices. When two tensors are contracted along an index, the corre-

AL = H (6)

The j-th index is contracted, which results in a rank-6 tensor. Einstein’s summation

sponding leg is joined.

convention is assumed.

. MPS

V- ... .. @)

As this network has no legs, this is a scalar.

O = +—H—H—H—+ (9)

. Action of an MPO on MPS

The action of an operator on a wave function should give a wave function. Here, the

. Norm of an MPS

. MPO

action of an MPO on an MPS results in a structure of MPS, so we are consistent.

. Expectation value of an operator

, WaEEsasan
e i e

Once again, there are no free legs, so the above network represents a scalar as it should.

(11)



C. MPS Manipulations

MPS are used for numerical simulations because there are efficient numerical techniques
for their manipulation, i.e., they can be added, acted upon by operators, or cast into some
useful form while maintaining a low enough bond dimension. Some of the important tech-

niques and manipulations are listed below:

1. Gauge freedom. We could insert AA™! between any two matrices in the MPS/MPO
form of the coefficient tensor this would change the numerical content of the matrices
but leave the tensor invariant, this is a gauge freedom. To fix this gauge, we choose

the right or left normalized matrices. Right normalization means,

[t - (12)
j] - |- (13)

An MPS in the canonical form only contains right or left-normalized matrices. How-

and left normalization is,

ever, at the boundary where right and left normalized matrices meet, the matrix cannot

be normalized and is called the active site or orthogonality center.

(14)

2. Normalization and truncation. To normalize an MPS, we use QR decomposition and
multiply the so-obtained R by the subsequent matrix. Operations on MPS and MPO
change their bond dimension, we need an appropriate strategy to keep the bond di-
mensions in check, we do this by Support Vector Decomposition (SVD) of the factor
matrices of the coefficient tensor. This is called truncating the MPS or MPO.

3. Any wave function can be written as an MPS. One important property of MPS is that
any wave function can be written as an MPS if we allow the bond dimensions to grow

exponentially towards the center of the chain.



4. Area law of entanglement entropy. MPS are useful ansatz for one-dimensional quantum
systems because their ground state (at least in the case of gapped Hamiltonians) follows

an area law for entanglement entropy.

III. DENSITY MATRIX RENORMALIZATION GROUP (DMRG)

The DMRG algorithm variationally minimizes an MPS ansatz to reach the ground state of
one-dimensional Hamiltonians (typically) with low entanglement. The name of the algorithm
is due to historical reasons that we discuss in the following section. The modern viewpoint

of a variational algorithm over the MPS class is described in the subsequent section.

A. History

Wilson developed the numerical renormalization group (NRG) in the 1970s [6]. Consider
a spin system in one dimension. The idea of NRG is to block a set of spins together, find
the eigenvalues of the Hamiltonian reduced to these sites, store the lowest m eigenvalues
and their corresponding eigenstates, and repeat the procedure by treating a set of blocks
as new sites in the next step. NRG only worked for the Kondo problem. The principle of
failure of NRG was elucidated by Steve White in 1992, and the correct way of truncating the
Hilbert space is not on an energy basis but on the basis of the density matrix. Steve White
developed what is now known as the density matriz (because we truncated in the basis of
density matrices) renormalization group (because we use Wilson’s RG idea of using blocks
of spins as single sites and iterating over them) [7] [8]. White’s DMRG involved choosing
a block of spins, finding the reduced density matrix for this subsystem, and truncating the

Hilbert space on this basis.

B. Modern DMRG

In this section, will describe DMRG in the modern language of MPS and tensor networks.

The aim of the algorithm is to find an MPS |¥) such that,

(V[ H|V)

A7)

: (15)



is minimum. To ensure normalization, we introduce a Lagrange multiplier A and optimize

the following tensor network,

In the DMRG algorithm, the next step is to minimize this network with respect to single
tensors at a time. To minimize the network we need to take a derivative with respect to

one of the matrices in the MPS, since the MPS in linear, it simply results in removal of that

The green matrix is the one with respect to which we carry out the minimization in this

matrix.

step. In case the MPS is in mixed canonical form with the active site as the matrix with

which we are minimizing, we can contract the second term of the above expression to obtain,

.y i = 0. (18)

The above equation is an eigenvalue problem, which is solved in the DMRG algorithm using

Lanczos methods. The complete DMRG algorithm involves sweeping over the MPS; we
start from an MPS in right canonical form and reach a left canonical MPS. The active site

is moved from one end to the other.

IV. TIME EVOLVING BLOCK DECIMATION (TEBD)

If the Hamiltonian of the system only involves nearest-neighbor interactions, we can do
the time evolution of MPS with this Hamiltonian using TEBD. To time evolve an MPS for

time ¢ we need,

A

U=e ™ (19)

This is difficult because diagonalizing the Hamiltonian is difficult due to its large dimension.
So we need to reduce the dimension of the Hamiltonian, i.e., reduce to an appropriate sector

of the Hilbert space. In TEBD, we decompose the system’s Hamiltonian as follows,

H = 7'[even + Hodd- (20)



The TEBD approximation of the time evolution operator is,

ﬁTEBD (t) = €_iHevent6_iH°ddt. (21)

V. TIME-DEPENDENT VARIATIONAL PRINCIPLE (TDVP)

Consider the evolution of MPS with the Schrodinger equation,
iho, [ W) = H ), (22)

the solution to this equation may not be an MPS. To maintain the MPS form and low bond
dimension, in TDVP, we project the ansatz MPS to its tangent manifold of the same bond
dimensions and then solve the time-dependent Schrodinger equation only on this manifold.
In this algorithm, we do not calculate the time evolution operator but rather the action of
the operator on the MPS. We effectively guess an MPS from the tangent manifold described
above and variationally minimize it to obtain the time-evolved state. The expression to be

minimized is,

the green block is the Hamiltonian, which acts upon the MPS in canonical form. The
solution to this variational problem is an MPS in the tangent space of the initial MPS
ansatz. The advantage of this method over TEBD is simply the fact that it does not assume
any structure of the Hilbert space. However, solving the variational problem above is not

easy and sometimes is not possible.

VI. THE KITAEV CHAIN

In this section, we follow the treatment in [9], [10] and [11]. The Hamiltonian of the

system is,
L2 (L—1)/2—1 L

H - JCC Z O-;:no-gn—l-l + Jy Z Ugn+lggn+2 + g Z o* (24)
n
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where J, and J, are the z-type and y-type interaction strengths respectively. This model

can be exactly diagonalized using the Jordan-Wigner transformation given by,

. i—1_
af:e”rzj "JCZT.

Going to the momentum space and defining a set of four operators, as follows,

P— Cq—m T CT_q
v2 o
G, - Cq cjr,p

V2

and writing the Hamiltonian in this basis we obtain,

[ 261, —2iegy g 0]
2i€gqy 2614 O g
g 0 00

0 g 00

where e = J,e7* + J,e*. The eigenvalues are,

)\nln2 = n1|€Q| + N \/ ’€Q‘2 + 92-

In terms of the diagonal modes 7,,,, the Hamiltonian is,

H = Z /\nlnzniblnznmnz‘

ni=+,no==%
The GS energy is given by,
E=—4 Z \/ leq|” + g2
0<q<m/2

The GS is constructed by the action of negative-energy modes,

|GS) = H0<q<7r/277T——771— 2) .

(30)

(31)

(32)

(33)

It is non-degenerate in the presence of a magnetic field. In the absence of a magnetic field,

the GS is degenerate, for each mode is four-fold degenerate, so the total degeneracy is 4/%.

However, we either work in even or odd sectors (in our case,e even), so the effective GS

degeneracy is given by

Dgs =271,

(34)
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FIG. 1: Schematic of the direct and indirect RIXS process.
VII. RESONANT-INELASTIC X-RAY SCATTERING (RIXS)

RIXS is a spectroscopic method where photons are shined on materials, and the spectrum
of emitted photons from this process is recorded. Two processes contribute to the RIXS
spectrum. In the direct process, the core electron is excited to the valence shell, and one of
the electrons in the filled shell de-excites to the core hole, resulting in an X-ray emission. In
the indirect process, the incoming photon excites the core electron far beyond the chemical
potential of the material. The Coulomb interaction between the core hole and valence
electrons produces the excitations. The indirect RIXS spectrum is not very prominent. By
looking at the cross-section of the scattered photons, we can gather a wealth of information
about the excitations in the system. RIXS is especially very good at capturing the low
energy excitations of the system. Our motivation is to capture this spectrum theoretically.

We do this by following the formalism in, [12], [4] and [13]. We do not perform all the

calculations in great detail but mention the key ideas at each step.

1. The photon cross-section is obtained in the Kramer-Heisenberg formalism using

second-order Fermi’s golden rule.

2. The cross-section is obtained as a series in Kramer-Heisenberg amplitudes. The ampli-
tudes are obtained by ultra-short core-hole lifetime (UCL) expansion. The amplitude
is expanded in the powers of 1/T", and T is the lifetime of the core-hole excitation.

I & (Hy + H')!
Ay = wres = > _(fID == Dlg).

iT & (iT)!

(35)
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D is the dipole operator given by,

1 N
D= > e*rie . p;. (36)
1=1

imwg
Hj is the Kitaev model’s Hamiltonian and,

H' =Y hhl1SPSE, + ) hihlSYSY,. (37)

i€odd i€odd

3. We get an expression for the cross-section upon substituting these approximations in

the Kramer-Heisenberg formula.

4. The first and second order terms in the cross-section are,

2
xi(g,w) =Y (gl 53] |g) et rem et (38)
i,J
1 2
X2(q,w) = NZ<g|Sf(f)sfﬂ(t)SfT(O)SfL(O) lg) e T (39)
2,,t

As we can see, two and four-point dynamical correlation functions are key quantities that

we need, and we calculate them using DMRG and TEBD/TDVP in the next section.

VIII. RESULTS

Calculations were performed using the TeNPy Library (version 1.0.4) [14]. We compute
the four-point and two-point correlation functions for the Kitaev chain. Here is our strategy

for the simulations.

1. We first find the ground state MPS for the Kitaev chain using the DMRG algorithm.
Let’s say we obtain the state |W).

2. We then act S*S7

o o0 |¥) and time evolve this state using TEBD and TDVP algo-

rithm.

3. We finally obtain the four-point correlation function by computing the overlap of the

time-evolved MPS with the initial MPS,

X(i, 4. t) = (B[ S ()87, . (0)S57(0)57],(0) W) (40)
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FIG. 2: The energy scaling per unit site obtained from the DMRG algorithm. The linear

behavior is expected, and hence we have a sanity check for our DMRG setup.

Phase Diagram: Ground State Energy vs J;/.J,
T T T
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FIG. 3: We plot the ground state energy of the system as a function of the interaction

strength. We find the expected non-linear scaling from the exact solution.

4. We then do a space and time Fourier transform to obtain,

2

X(kw) = D> (U] S7(8)S74(8) S5 (0)S]L, (0) | W) efetdtreral| (41)
ij oot
this is what we call RIXS intensity and we plot this for several cases.

For the results that we present in the case of L = 62 and 128. We do not perform the
sum over all possible combinations of lattice sites. We choose a unit cell and sum over all

possible combinations of the two sites of the unit cell with the rest of the sites.
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FIG. 4: The RIXS intensity for no magnetic field. These are the results for the four-point
correlation functions. (Left) Evolution using TEBD (Center) Evolution using TDVP
(Right) Evolution using TEBD, but the correlation function is STS*S~S™ instead of

StS=5TS™ in the previous two cases.
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FIG. 5: The RIXS intensity with magnetic field (g/J; = 1). These are the results for the
four-point correlation functions. (Left) Evolution using TEBD (Center) Evolution using

TDVP (Right) Evolution using TEBD, but the correlation function is STS*S~S~ instead
of STS~S*S™ in the previous two cases.
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FIG. 6: The RIXS intensity with (Left) magnetic field (¢/J; = 1) and without (Right)
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magnetic field for two-point correlation functions S*S~.
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FIG. 7: The RIXS intensity with (Left) magnetic field (¢/J; = 1) and without (Right)

magnetic field for four-point correlation functions S*S~S*S~. These are results for a

chain of length L = 62, which are evolved for 20 seconds.
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FIG. 8: The RIXS intensity with (Left) magnetic field (¢/J; = 1) and without (Right)
magnetic field for four-point correlation functions STS~S*S~. These are results for a

chain of length L = 128, which are evolved for 20 seconds.

IX. CONCLUSIONS

We have successfully setup the simulation to compute the RIXS spectrum of the Kitaev
chain. Our results are quite preliminary but promising. In particular a few interesting

inferences can be made:
1. The two point correlation functions do not have any structure.

2. The second method of choosing just one unit cell and calculating its correlation with
other cells do not quite work for the chain length that we have set. So our results do

have significant boundary effects.

3. The spectrum shows the best features when the correlation function for S*S5~5TS5~

is computed other combinations result in almost featureless spectrum.
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4. The spectrum in the presence of magnetic field and its absence is significantly different.
5. TEBD and TDVP agree on their results.
Some of the shortcomings of our work are addressed next with reasons for the same:

1. We understood what we actually needed to compute quite late, leaving us with little

time to run experiments.
2. The simulations are painstakingly slow since the sum has to be done over the lattice.

3. Going to larger lattice sizes will alleviate the boundary effects but they also require
going to larger times which significantly increases the time complexity, so obtaining

features of the spectrum takes a lot of time.

However, we have found some empirical evidence for the original goal of finding some features

in the four-point spectrum of the Kitaev chain.

Appendix A: Periodic Boundary Conditions (PBCs) and MPS

We use open boundary conditions because MPS does not work well for PBCs. In par-
ticular we cannot apply a local operator on an infinite MPS (iMPS). This is necessary in
our case to probe the excitations. We cannot do this because the action of a local operator
breaks translational invariance and hence the resulting MPS cannot be an iMPS. To ensure
that the MPS upon the action of a local operator is still an iMPS, we have to ensure segment
BCs during the action of the operator, we did try to implement this but we could not achieve

reasonable time complexity, so we abandoned the idea.

Appendix B: Code

In this section we provide the code used to do the simulations, all the parameters of the

simulations are explicitly mentioned. The required libraries are:

import numpy as np
import matplotlib.pyplot as plt

from tqdm import tqdm
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from pathlib import Path

import os

from matplotlib import colors

from tenpy.models.model import CouplingMPOModel
from tenpy.models.model import CouplingModel
from tenpy.models.model import NearestNeighborModel
from tenpy.models.model import MPOModel

from tenpy.models.lattice import Chain

from tenpy.networks.site import SpinHalfSite
from tenpy.networks.mps import MPS

from tenpy.algorithms import tebd

from tenpy.algorithms import tdvp

from tenpy.algorithms import dmrg

1. Ground State Using DMRG

class KitaevChain(CouplingMPOModel, NearestNeighborModel) :

def init_sites(self, model_params):
conserve = model_params.get('conserve', 'parity')
assert conserve != 'Sz'
if conserve == 'best':
conserve = 'parity'
self .logger.info("/s: set conserve to 7s'", self.name, conserve)
sort_charge = model_params.get('sort_charge', True)
site = SpinHalfSite(conserve=conserve, sort_charge=sort_charge)

return site

def init_terms(self, model_params):
length = model_params.get('L', 12)

strx = []
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39

40

41

42

43

44

45

46

47

stry = []

for i in range(length-1):

J_1

J_2

for

for

for

if i%2 == 0:

strx.append (1)
stry.append(0)

else:

strx.append(0)
stry.append (1)
np.asarray(model_params.get('J_1', 1))

np.asarray(model_params.get('J_2', 1))

np.asarray(model_params.get('g', 1))

ul, u2, dx in self.lat.pairs['nearest_neighbors']:
self.add_coupling(strx, ul, 'Sigmax', u2, 'Sigmax'
ul, u2, dx in self.lat.pairs['nearest_neighbors']:

self.add_coupling(stry, ul, 'Sigmay', u2, 'Sigmay', dx)

u

in range(len(self.lat.unit_cell)):

self .add_onsite(-g, u, 'Sigmaz')

model_params = {'J_1': 1,

1,

'J_2':
'g': 1,
'L': 22,
'"bc_MPS':

'finite',

'sort_charge': True}

H = KitaevChain(model_params)

psi = MPS.from_lat_product_state(H.lat, [['up']])

dmrg_params = {

"trunc_params': {

'chi_max':

'svd_min':

100,
1.e-10,

18
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"trunc_cut': None
1,
'max_E_err': 0.01,
'max_S_err': 0.01,
'max_sweeps': 10,

'mixer': False

eng = dmrg.TwoSiteDMRGEngine(psi, H, dmrg_params)

EO, psi = eng.run()

2. Two-Point Correlation Functions Using TEBD

steps = 20

tebd_params = {
'N_steps': 1,
'dt': 0.1,
'preserve_norm': True,

"trunc_params': {'chi_max': 100, 'svd_min': 1.e-12}

corrs = np.zeros((model_params['L'], model_params['L'], steps))

corrsi = np.zeros((model_params['L'], model_params['L'], steps))

(]
(]

psi_steps_1

psi_steps_2

for i in range(model_params['L']-1):

phi_1 = psi.copy(Q)
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phi_1.apply_local_op(i, 'Sp', unitary=True)
psi_steps_1.append(phi_1)

for i in range(model_params['L']-1):
phi_2 = psi.copy()
phi_2.apply_local_op(i, 'Sm', unitary=True)
psi_steps_2.append(phi_2)

for step in tqdm(range(steps)):
for i, state in enumerate(psi_steps_2):
eng = tebd.TEBDEngine(state, H, tebd_params)

eng.run()

for i in range(model_params['L']-1):
for j in range(model_params['L']-1):
corrs[i, j, step] = psi_steps_2[i].overlap(psi_steps_1[j]) .real

corrsili, j, step] = psi_steps_2[i].overlap(psi_steps_1[j]).imag

3. Two-Point Correlation Functions Using TDVP

steps = 20

tdvp_params = {
'N_steps': 1,
'dt': 0.1,
'preserve_norm': True,

"trunc_params': {'chi_max': 100, 'svd_min': 1.e-12}

corrs = np.zeros((model_params['L'], model_params['L'], steps))
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corrsi = np.zeros((model_params['L'], model_params['L'], steps))

]
]

psi_steps_1

psi_steps_2

for i in range(model_params['L']-1):
phi_1 = psi.copy()
phi_1.apply_local_op(i, 'Sp', unitary=True)
psi_steps_1.append(phi_1)

for i in range(model_params['L']-1):
phi_2 = psi.copy()
phi_2.apply_local_op(i, 'Sm', unitary=True)
psi_steps_2.append(phi_2)

for step in tqdm(range(steps)):
for i, state in enumerate(psi_steps_2):
eng = tdvp.TwoSiteTDVPEngine(state, H, tebd_params)

eng.run()

for i in range(model_params['L']-1):
for j in range(model_params['L']-1):
corrs[i, j, step] = psi_steps_2[i].overlap(psi_steps_1[j]) .real

corrsi[i, j, step] = psi_steps_2[i].overlap(psi_steps_1[j]).imag

4. Four-Point Correlation Functions Using TEBD

steps = 20

tebd_params = {
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'N_steps': 1,
'dt': 0.1,
'order': 2,

"trunc_params': {'chi_max': 100, 'svd_min': 1.e-12}

corrs = np.zeros((model_params['L'], model_params['L'], steps))

corrsi = np.zeros((model_params['L'], model_params['L'], steps))

psi_

psi_

for

for

for

[]
[]

steps_1

steps_2

i in range(model_params['L']-1):

phi_1 = psi.copy()

phi_1.apply_local_op(i, 'Sp', unitary=True)
phi_1.apply_local_op(i+l, 'Sm', unitary=True)
psi_steps_1.append(phi_1)

i in range(model_params['L']-1):

phi_2 = psi.copy(Q)

phi_2.apply_local_op(i, 'Sp', unitary=True)
phi_2.apply_local_op(i+l, 'Sm', unitary=True)
psi_steps_2.append(phi_2)

step in tqdm(range(steps)):
for i, state in enumerate(psi_steps_2):
eng = tebd.TEBDEngine(state, H, tebd_params)

eng.run()

for i in range(model_params['L']-1):

for j in range(model_params['L']-1):

22

corrs[i, j, step] = psi_steps_2[i].overlap(psi_steps_1[j]) .real
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corrsi[i, j, step] = psi_steps_2[i].overlap(psi_steps_1[j]).imag

5. Four-Point Correlation Functions Using TDVP

steps = 20

tdvp_params = {
'N_steps': 1,
'dt': 0.1,
'preserve_norm': True,

"trunc_params': {'chi_max': 100, 'svd_min': 1.e-12}

corrs = np.zeros((model_params['L'], model_params['L'], steps))

corrsi = np.zeros((model_params['L'], model_params['L'], steps))

]
]

psi_steps_1

psi_steps_2

for i in range(model_params['L']-1):
phi_1 = psi.copy()
phi_1.apply_local_op(i, 'Sp', unitary=True)
phi_1.apply_local_op(i+l, 'Sm', unitary=True)
psi_steps_1.append(phi_1)

for i in range(model_params['L']-1):
phi_2 = psi.copy()
phi_2.apply_local_op(i, 'Sp', unitary=True)
phi_2.apply_local_op(i+l, 'Sm', unitary=True)
psi_steps_2.append(phi_2)
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for step in tqdm(range(steps)):
for i, state in enumerate(psi_steps_2):
eng = tdvp.TwoSiteTDVPEngine(state, H, tebd_params)

eng.run()

for i in range(model_params['L']-1):
for j in range(model_params['L']-1):
corrs[i, j, step] = psi_steps_2[i].overlap(psi_steps_1[j]) .real

corrsili, j, step] = psi_steps_2[i].overlap(psi_steps_1[j]).imag

Appendix C: Fourier Transform of the Correlation Functions

We save the data for the correlation functions using the following program.

L

model_params.get('L')

g = model_params.get('g')

folder = f'tdvp_correlators_L_{L}_g_{g}_steps_{steps}_ppmm2'
if not os.path.exists(folder):

os.makedirs(folder)

for i in range(model_params['L']-1):

real_part = corrs[i, :, :]

imag_part corrsili, :, :]

complex_matrix = real_part + 1j * imag_part

filename = os.path.join(folder, f'{i}.txt')

np.savetxt(filename, complex_matrix, fmt='%.6f', delimiter=' ')

print (f'Saved complex matrix for i={i} to {filename}')
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Then we read this data and do a Fourier transform as follows.

steps = 20
L =22
g=1

folder = f'tdvp_correlators_L_{L}_g_{g}_steps_{steps}_ppmm2'
folder_path = folder
txt_files = [

f for f in os.listdir(folder_path)

if f.endswith(".txt")

and os.path.isfile(os.path.join(folder_path, f))

num_files = len(txt_files)

fft_sum = None
for i in range(0, num_files):

file_path = os.path.join(folder_path, f"{i}.txt")

with open(file_path, "r") as f:
lines = f.readlines() [1:]
complex_matrix = []
for line in lines:
row = []
elements = line.split()
for element in elements:
row.append(complex(element.replace("j", "j")))

complex_matrix.append (row)

matrix = np.array(complex_matrix)

fft_matrix = np.fft.fft2(matrix)
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56
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61

p,t

if fft_sum is None:
fft_sum = fft_matrix
else:

fft_sum += fft_matrix

= matrix.shape

time = np.linspace(0,t-1,t)

pos

= np.linspace(0,p-1,p)

dt = (time[-1] - time[0])/len(time)

dx

= (pos[-1] - pos[0])/len(pos)

freq = 1/dt*np.arange(0,len(time))/len(time)*2*np.pi

k:

1/dx#*np.arange(0,len(pos))*2*np.pi/len(pos)

fft_sum = np.fft.fftshift(fft_sum)

I_
R

psd

np.imag(fft_sum)
np.real (fft_sum)
= abs(fft_sum/len(pos))**2

norm = colors.Normalize(vmin=0, vmax=1)

y_ticks = [0, np.pi / 2, np.pi, 3 * np.pi / 2, 2 * np.pil
y_labels = ['0', '"\u03C0/2', '\u03CO', '3\u03C0/2', '2\u03C0']

plt

plt.contourf(k,freq,np.log(psd.T+1)/np.max(np.log(psd.T+1)),

.figure(figsize=(10, 8))

levels=np.linspace(0, 1, 11), cmap='plasma', norm=norm)

plt
plt

plt.

plt

plt.
plt.
plt.

plt

.colorbar(label="")

title('")

xlabel('k', fontsize=20)

.ylabel ('\u03C9', fontsize=20)

xticks(ticks=y_ticks, labels=y_labels, fontsize=20)
yticks(fontsize=20)
savefig(f'figures/{folder}.pdf"')

.show()
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