
The Rosenbluth and the pruned-enriched Rosenbluth algorithm for simulating
polymers on a lattice

Sajag Kumar ∗

School of Physical Sciences (SPS),
National Institute of Science Education and Research (NISER) Bhubaneswar

We begin with the simulation of a random walk on Z2 and Z3. Then we describe a model of
polymers as self-avoiding walks on a lattice. We then simulate SAWs on Z2 and Z3 using the
Rosenbluth method and compute the average end-to-end distance of the polymer. We further
implement the pruned-enriched Rosenbluth method, which is a modified version of the Rosenbluth
method.

20 0 20 40 60 80 100
40

20

0

20

40

Random walk on 2 of 10000 steps.
START
END

0 10 20 30 40 50 60 10
0

10
20

30
40

50

0

20

40

60

Random walk on 3 of 10000 steps.
START
END

Figure 1: Random walks of 10000 steps on Z2 and Z3

I. RANDOM WALKS ON LATTICE

We have discussed random walks in class. Generating
them is among the simplest applications of the Monte
Carlo methods. The random walk we have implemented
here is slightly different from the one we discussed in
class. The difference being our random walk is con-
strained to move on a lattice. The step size is always
one. In particular we have simulated random walk on
Z2 and Z3.

II. POLYMERS AS SELF-AVOIDING
RANDOM WALKS

During a random walk a point may be revisited. A
self-avoiding random walk (SAW) does not visit the
point it has already visited. SAWs form a simplistic yet

∗ sajag.kumar@niser.ac.in

useful toy models for polymers. In particular, SAWs
form a very good model for polymers that are linear
and unbranched. Following are some important points
about the model:

1. The polymer is assumed to be made up of
monomers of equal length. These monomers are
the steps in the SAW.

2. The end points of the polymers interact via the
Lennard-Jones potential. But we switch this po-
tential off.

3. The Lennard-Jones potential is switched off but
the two end points of the polymer is assumed to
repel each other. This is a valid assumption when
the polymers are present in some solvent.

4. We study the polymers on lattice, which further
restrict the position of the monomers with respect
to each other but large scale behaviour is not sen-
sitive to this.

The squared end-to-end distance of a polymer of
length N on Z2 scales as

< r2 > ∼ N
6
4

and on Z3

< r2 > ∼ N
6
5 .

A. Generating SAWs

We have implemented the one-step-look-ahead
method for generating SAWs on both Z2 and Z3. Fol-
lowing are the steps involved in the algorithm:

1. The walk begins at the origin.

2. After each step the algorithm looks for neighbour-
ing sites that are unoccupied on the lattice.

mailto:sajag.kumar@niser.ac.in


2

7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0

6

4

2

0

2

4

6

Random walk on 2, Stuck on step 66
START
END

40
30

20
10

0 25
20

15
10

5
0

5
10

5
0
5
10
15
20
25

Random walk on 3 of 1000 steps
START
END

Figure 2: An example of generating SAW. The SAW
on Z2 got stuck on the 66th step, while on Z3 did not

stuck and completed 1000 steps.

3. The algorithm chooses one among the available
sites at random. Each available site is equally
likely to be chosen.

4. The algorithm stops when either the number of
steps have been reached or when there are no un-
occupied neighbouring sites.

The problem with this algorithm is that we are not
guaranteed a SAW of desired number of step. The walk
may get stuck after some steps. Also some of the walks
are more probable than others. All of this implies that
the estimate for the squared end-to-end distance for the
polymers would not be good.

III. ROSENBLUTH METHOD

This is an importance sampling approach to estimate
the squared end-to-end distance of a polymer on a lat-
tice. The SAWs generated through the one-step-look-
ahead method form the trial function. The method is
as follows:

1. The SAW begins at the origin. At each step (n)
of the walk we assign a weight Wn to the polymer.
(W1 = 1)

2. At any step m, the weight is modified as follows:

(a) If there are no unoccupied neighbours

Wm = 0.

Table I: Comparison of end-to-end distance as
computed through Rosenbluth method and the

expected N6/4 and N6/5 for Z2 and Z3 respectively. It
is clearly visible that for larger values of N (number of
steps) the Rosenbluth gave bad values. The values in
case of Z2 are much worse than in case of Z3 because
the number of walks that stuck in Z3 are less than in
Z2 at smaller values. This happens because Z3 has an

additional degree of freedom.

N < r2 >2D N
6
4 < r2 >3D N

6
5

10 29.9 31.6 18.7 15.8
20 77.3 89.4 40.6 36.4
30 133.7 164.3 64.2 59.2
40 202.1 253 91.1 83.7
50 281.2 353.6 121.6 109.3
60 387.6 464.8 145.3 136.1
70 422.8 585.7 176.5 163.7
80 546.5 715.5 210.4 192.2
90 612.3 853.8 236.6 221.4

100 769.1 1000 266.9 251.2
110 821.6 1153.7 318.2 281.6
120 1172.8 1314.5 370.4 312.6
130 492.8 1482.2 377.9 344.1
140 443.5 1656.5 380.8 376.1
150 277.8 1837.1 406.7 408.6

(b) If there are a unoccupied neighbours and b
neighbours in total

Wm =
a

b− 1
Wm−1,

here the denominator is b − 1 because one
of the neighbours is always occupied as the
polymer must have reached the present site
through a neighbour. b is 4 for Z2 and 6 for
Z3.

3. We generate N polymers of the same length (L)
independently in the method as described above
and the compute the weighted average of the
squared end-to-end distance as follows:

< r2 >=

∑
r2(i)w(i)∑
w(i)

,

where r2(i) is the squared end-to-end distance of
the i-th polymer generated by the method.

The Rosenbluth algorithm runs into trouble when the
length of the polymers is large. The number of polymers
of desired length that it can produce is significantly low.
A few polymers and their weights dominate the average.



3

IV. THE PRUNED-ENRICHED ROSENBLUTH
METHOD

Table II: Comparison of end-to-end distance as
computed through PERM and the expected N6/4 and
N6/5 for Z2 and Z3 respectively. The value through

the PERM algorithm at higher values of N for the 2D
case is much better than Rosenbluth. For the 3D case
Rosenbluth performed better but for larger values of N
(> 5000) PERM will perform better. At smaller values
of N (that is those values at which most of the SAWs
do not get stuck) there is not much difference in the
performance of PERM and Rosenbluth (PERM even
performed worse than Rosembluth in the 3D case).

N < r2 >2D N
6
4 < r2 >3D N

6
5

10 36.3 31.6 8.3 15.8
20 84.6 89.4 15.1 36.4
30 148.5 164.3 21.9 59.2
40 232.8 253 28.9 83.7
50 294.6 353.6 35.8 109.3
60 388.5 464.8 42.3 136.1
70 470.1 585.7 47.8 163.7
80 604.2 715.5 54.8 192.2
90 657.7 853.8 62.6 221.4

100 697 1000 69 251.2
110 793.6 1153.7 75 281.6
120 1021.9 1314.5 82.2 312.6
130 836.9 1482.2 87.3 344.1
140 1398.6 1656.5 94 376.1
150 3141.6 1837.1 101.7 408.6

The PERM algorithm helps in overcoming the im-
balance of weights that is developed in the Rosenbluth
algorithm. The algorithm has a pruning step where it
prunes the effect of low weight polymers on the aver-
age and an enriching step where it enriches the effect of
polymers of higher weights on the average. The pruning
and enriching steps are as follows, suppose the length of
the subunit of the polymer in the Rosenbluth algorithm
is L with weight w then:

1. Pruning. If w ≤ W− then one of the following
steps is performed at random.

(a) The polymer is discarded.

(b) The weight is doubled.

2. Enriching. If w ≥ W+ then the weight of the
polymer is halved and a copy of the polymer is
added with equal weight.

The constants W− and W+ are initially set to 0 and
10100 respectively. And after each step their value is
changed to w and 10w respectively. I had difficulty
in understanding the origin of the constants, so I went
with what the original paper suggested. They have also
mentioned that the output of PERM is quite insensitive
to these constants.

V. CONCLUSIONS AND DISCUSSIONS

We have implemented the Rosenbluth and the PERM
algorithm for the estimation of end-to-end distance of
polymers on square and cubic lattice. The superior-
ity of PERM over Rosenbluth method is argued and
demonstrated.

The initial plan was to plot the findings and verify the
scaling law for the lattices through least square fitting.
But for plots to be relevant we had to plot many points
which required much more computational power than a
laptop. Even the scripts which are trying to compute
only fifteen points take more than 20 minutes to run.
Another computational hindrance is not being able to
call the Rosenbluth or the PERM function on step sizes
of the order of thousands.

The superiority of the PERM algorithm even with
number of steps currently available could be even more
apparent if we could average over large number of poly-
mers for each N . At present we are averaging over 10000
polymers for each step, taking this number higher would
show the vulnerabilities of Rosenbluth and the superi-
ority of PERM.

Our analysis for the cubic lattice has been for small
N , SAWs on Z3 usually do not stuck for so few steps.
This happens because of the extra degree of freedom
that the cubic lattice has, on square lattice the max-
imum number of available sites is 3 while on a cubic
lattice it is 6, so a SAW on a square lattice is more
likely to get stuck quickly. Thats why the results from
cubic lattice are anomalous. For high values of N , the
superiority of PERM would be much more apparent.

[1] Computational Physics, Jos M. Thijssen., 2nd Edition,
Cambridge University Press.

[2] Monte Carlo Calculation of the Average Extension of
Molecular Chains, Marshall N. Rosenbluth and Arianna
W. Rosenbluth, J. Chem. Phys. 23, 356 (1955).

[3] Pruned-enriched Rosenbluth method: Simulations of θ
polymers of chain length up to 1000000, Peter Grass-
berger, Phys. Rev. E, Vol. 56, No.3 (1997).

[4] Conputaitonal Physics, TU Delft, Quantum Tinkerer,
https://compphys.quantumtinkerer.tudelft.nl.

https://compphys.quantumtinkerer.tudelft.nl

	The Rosenbluth and the pruned-enriched Rosenbluth algorithm for simulating polymers on a lattice
	Abstract
	Random Walks on Lattice
	Polymers as Self-Avoiding Random Walks
	Generating SAWs

	Rosenbluth Method
	The Pruned-Enriched Rosenbluth Method
	Conclusions and Discussions
	References


