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Interacting quantum systems governed by unitary dynamics (generally) thermalize. Upon ther-
malization any local region loses its initial information. Scrambling dynamics describes the flow
of this lost information to non-local degrees of freedom. It can be characterised by the growth of
local Heisenberg operators. The out-of-time order correlator (OTOC) allows us to measure this
spread of operators. Recently, due to a bound on the growth of OTOCs in certain systems, and
a realisation that a spin system (SYK model) and (holographic dual of) black holes saturate this
bound, has led to a number of studies on the behaviour of OTOC in various quantum and classical
systems. For short-range interacting quantum many-body systems the Lieb-Robinson bound de-
scribes the lightcone of the OTOC. However, the behaviour of OTOC in long-range systems is still
poorly understood. In this project, we numerically compute the OTOC (or the decorrelator in the
classical limit) for various classical (Kauffman cellular automaton (KCA) and classical Ising model)
and quantum systems (the transverse field Ising model). For the simulations we have used the monte
carlo method (KCA), finite element and Runge-Kutta (RK4) method (classical Ising model), and
tensor networks (transverse field Ising model).

INTRODUCTION

Imagine a quantum spin chain of interacting spin-1/2
particles. Consider two orthogonal initial pure states of
the chain, which have approximately the same average
energy but opposite expectation values for σz (the mag-
netisation in z direction). If the system is chaotic, and
if we consider the time evolution of these two states at
a time long enough times, the expectation value of the
operator will be approximately the same in both time-
evolved states. This is called thermalization. Upon ther-
malization the expectation value of this operator matches
the expectation value of the thermal density matrix with
the energy of the initial states. These two states look the
same at late times as far as the measurements of these
operators are concerned. Information seem to have lost
from the local degree of freedom to the non-local degrees
of freedom (assuming the system is closed). Quantum
information scrambling is the study of this flow of infor-
mation from local to non-local degrees of freedom.

The flow of information to non-local degrees of free-
dom is characterised by the spreading of local operators.
An out-of-time order correlator allows us to measure this
spread of operators. The idea is to probe the spread of
W (t) with another operator V , which is localised at some
distance away from W (0).

Out-of-time order correlator

In the setting of quantum many-body spin systems,
the out-of-time order correlator is defined as

⟨W (x, t)V (0, 0)W (x, t)V (0, 0)⟩ (1)

where W (x, t) and V (0, 0) are Hermitian operators lo-
calised around x at time t = t and around 0 at time

t = 0, respectively. The OTOC is a measure of the effect
of V (0, 0) on the measurement of the operator W (x, t).
This is clearly seen once we look at this correlator as the
inner product of the following states

|ψ1⟩ =W (x, t)V (0, 0) |ϕ⟩ (2)

= eιHtW (x, 0)e−ιHtV (0, 0) |ϕ⟩ (3)

and

|ψ2⟩ = V (0, 0)W (x, t) |ϕ⟩ (4)

= V (0, 0)eιHtW (x, 0)e−ιHt |ϕ⟩ (5)

the decorrelator is just the inner product of these two
states. If the action of V (0, 0) has no effect then this
quantity should be one, otherwise depending on the ac-
tion of V (0, 0) it takes an intermediate value between 0
and 1.

The classical limit of the OTOC

In quantum mechanics the out-of-time order commu-
tator between two Hermitian operators is given by

⟨[W (x, t)V (0, 0)]2⟩. (6)

In the setting of classical spin systems an analogous ex-
pression can be written for the decorrelator between two
copies of classical spin systems is given by

D(x, t) = ⟨SA
i (t),S

B
0 (0)⟩ (7)

where A and B denote the two copies is the Poisson
bracket and ⟨⟩ denotes average over the thermal Gaussian
ensemble. One can simplify this further to obtain

D(x, t) =
1

2
(1− ⟨SA

x (t) · SB
x (t)⟩) (8)
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this is the classical limit of the OTOC called the decor-
relator.

We have followed [1], [2] for the discussion on OTOCs
and quantum information scrambling.

In the following sections we first compute the decor-
relator for two classical systems, Kauffman cellular au-
tomaton, and classical spins on a one-dimensional lattice.
We compare the decorrelator for different models and
various parameters. Then, we give a brief review of ma-
trix product states and algorithms for time evolution of
matrix product states. Following which we compute the
OTOC for the transverse field Ising model, and similar
models with more than just nearest neighbour interac-
tion. For the tensor network calculations in the quantum
case we use TenPy library [3].

KAUFFMAN CELLULAR AUTOMATON

A cellular automaton is a model of computation. It is
a collection of cells arranged in some specific geometry.
Each cell is assigned a state from the state space and
the evolution of this state in time is governed by a set of
local rules. We study the Kauffmann cellular automaton
(KCA) motivated by [4]. The KCA is a system of N cells
in one dimension. The state (σ(r, t)) of a certain cell at
time t and position r can be ±1. Time evolution of the
system is governed by a set of local rules fr,t:

σ(r, t+1) = fr,t[σ(r−K, t), ..., σ(r, t), ..., σ(r+K, t)]. (9)

which are random with probability p in space and time,
fr,t is 1 with probability p and −1 with probability 1−p.
The future state of a cell depends on the local rules and
its 2K + 1 neighbouring cells.

We want to study how quickly does the knowledge of
the state of a cell propagates through the automaton. We
do this by computing the OTOC which in the case of the
KCA is:

d(r, t) =
1

2
[1− ⟨σA(r, t)σB(r, t)⟩p] (10)

where σA and sigmaB are the states of two copies of
KCA which at t = 0 only differ in the state of cell at r =
0, the ⟨⟩p represents ensemble average over realisations
with the same p. The classical OTOC is just the local
distance between the systems A and B. We obtain the
OTOC for various values of K as shown in figure 1 and
2, in particular we observe that for high values of p the
dynamics of the KCA is chaotic while it is not the case
for smaller values.

Simulation details. For our simulations we choose
N = 2048, t = 400 and p = 0.40 (except in figure
1(b)). The initial state is generated randomly by choos-
ing one among ±1 with probability 0.5. We update the
local rules after each time step. The ensemble aver-
age is done over (100, 100, 500, 25, 20) realisations for
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FIG. 1. Lightcone structure of the decorrelator d(r, t) with
N = 2048 and K = 4 ,with a single spin flip at the origin
r = 0 when t = 0. (Top) For p = 0.40 we obtain the expected
behaviour where the initial perturbation spreads through the
system with a linear wavefront. (Bottom) Once we increase
the bias of the local rules towards one of the values the per-
turbation freezes. When p = 0.11 the perturbation barely
spreads through the system. The very faint lightcone like
structure is an artifact of averaging over less number of au-
tomatons and will vanish once we sample a large number of
automatons.

K = (2, 3, 4, 5, 6). For figure 1(b) we average over 100
realisations of the initial state. The random numbers
were generated with NumPy.

CLASSICAL SPIN SYSTEMS

In this section we consider classical spins on a one di-
mensional lattice motivated by [5]. Classical spins are
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FIG. 2. Comparison of the lightcone structure of the decorrelator for different values of K. The perturbation spreads with a
velocity directly proportional to K. This is expected, as K determines the number of neighbouring cells whose states govern
the dynamics of a certain cell. The velocity of perturbations (or the boundary of the lightcone) may not be captured well in
these figures. precise boundaries may be obtained by averaging over a large number of automatons.
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FIG. 3. Lightcone structure of the decorrelator for the clas-
sical Ising chain with nearest neighbour interactions whose
dynamics is governed by the Hamiltonian in (11). The decor-
relator is obtained for two infinite temperature copies of the
system which are same at t = 0 but in the polar angle of the
spin at site r = 0 (they differ by ϵ = 0.001). A sharp boundary
is observed between correlated and uncorrelated spins. This
small initial perturbation drives the two systems away from
each other in the phase space. After some time (t > 400),
the two systems will be completely decorrelated. This is the
hallmark of chaos.

unit vectors in three dimensions. A classical spin is ob-
tained by taking the S → ∞ limit of a spin-S quantum
spin. These classical systems are studied with the moti-
vation to decipher the behaviour of large spin quantum
systems.

We take the well studied classical many-body model
the classical Ising model with nearest neighbour inter-
actions. The model is described by the Hamiltonian in
11.

H1 = −J
N−1∑
i=0

Si · Si+1 (11)

We want to study how the knowledge of a small per-
turbation spreads through the system. We do so by the
following protocol. We take two copies of an infinite tem-
perature state, and we slightly rotate one of the spins by
an angle ϵ, and follow the trajectory of both the copies in
phase space. The measure of how far they are in phase
space is given by the classical OTOC or the decorrelator

D(r, t) =
1

2
(1− ⟨Sa

r(t) · Sb
r(t)⟩) (12)

where a and b represent the two copies, the average is
over noisy infinite temperature initial states. When and
where two spins are correlated the decorrelator is 0 and
when and where they are uncorrelated the decorrelator
is 1. We obtain a lightcone structure for the decorrelator
as shown in figure 3. The knowledge of the local pertur-
bation spreads linearly in time through the system.
We further explore this model by adding next and

next-nest nearest model interaction to the classical Ising
model. The model with next-nearest neighbour interac-
tion is governed by the Hamiltonian H2 given by

H2 = −J1
N−1∑
i=0

Si · Si+1 − J2

N−1∑
i=0

Si · Si+2 (13)

while the model with next-next nearest neighbour in-
teraction as well is governed by H3 which is as follows

H3 = −
N−1∑
i=0

(J1Si · Si+1 + J2Si · Si+2 + J3Si · Si+3) .

(14)
We compute the spin dynamics by integrating the stan-

dard equations of motion ∂tSi = {Si, H}, where {. . .}
indicate Poisson brackets, and the spins Si satisfy the
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FIG. 4. Lightcone structures for the J1-J2 classical Ising model. The dynamics of the model is governed by the Hamiltonian in
(13). The protocol for computing the decorrelator is same as in the nearest-neighbour model. (a) Only next-nearest neighbours
(nnn) interact, the nearest neighbour (nn) interaction strength is set to 0. The perturbation spreads weakly, there is a lightcone
structure to the spread but even the spins inside the lightcone seem sufficiently uncorrelated. (b) J1 = J2 i.e. both interaction
strength are the same. The perturbation spreads with a velocity larger than in the case of nearest neighbour model. Which is
the expected behavior similar to the Kauffman cellular automaton, where all the K neighbours interacted with equal strength.
We study two other cases, (c) 2J1 = J2 and (d) J1 = 2J2, in both the cases the lightcone structure is present with velocity
of the perturbation even higher than in (b). However, in these models there is no sharp boundary between correlated and
uncorrelated spins. Once again this behaviour may vanish upon averaging over a large number of initial states but all the
simulations here sample over a fixed number of states. So there is a chance that this is the true behaviour of the model.
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FIG. 5. Lightcone structures for the J1-J2-J3 classical Ising model. The dynamics of the model is governed by the Hamiltonian
in (13). The protocol for computing the decorrelator remains the same. We tune the interaction strength between nearest,
next-nearest and next-next-nearest neighbours and compare the resulting lightcone structure. (a) When we have only next-
next-nearest neighbour interactions, a highly non-trivial structure in the lightcone emerges with different regimes of fixed value
of the decorrelator separated by sharp boundaries. It is highly unlikely that this structure will vanish upon averaging over a
large number of initial states. In case there is (b) no next-nearest neighbour interaction or (c) all the interactions are equally
strong, the typical lightcone structure with a sharp boundary is obtained is obtained. The observed boundary for these models
is not linear. We study two more models, as an extension of the J1 = 2J2 and 2J1 = J2 models, with (d) J1 = 2J2 = 4J3

and (e) J3 = 2J2 = 4J1, in both these cases the systems decorrelates very quickly. The lightcone structure is still present but
without a sharp boundary.

relation {Sα
i , S

β
i′} = δii′ε

αβγSγ
i . The equation of motion

for the system governed by the Hamiltonian H1 is,

dSi

dt
= JSi × (Si−1 + Si+1), (15)

for H2 is,

dSi

dt
=J1Si × (Si−1 + Si+1)+ (16)

J2Si × (Si−2 + Si+2), (17)

and finally for H3 is,

dSi

dt
=J1Si × (Si−1 + Si+1)+ (18)

J2Si × (Si−2 + Si+2)+ (19)

J3Si × (Si−3 + Si+3). (20)

The results of the decorrelator computation for these
models is shown in figure 4 and 5. The lightcone struc-
ture of the decorrelator emerges in all the cases. The per-
turbation velocity, as expected depends on the strength
and range of the interaction. The cases with only next-
nearest and only next-next nearest neighbour interaction
are interesting. With the perturbation spreading very
slowing in one and a complicated structure of the light-
cone in the other. Also for the next-next nearest model
the Lieb-Robinson bound does not seem to hold, with the
perturbation spreading almost instantaneously through
the system. This is not a problem however as the Lieb-
Robinson bound holds only for quantum systems.

Simulation details. For our simulations we take 2048
spins on a one-dimensional lattice and evolve them for
400 seconds. We solve the equations of motion using
two different methods. Firstly, we tried finite element
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method. We obtained correct solutions but the time step
chosen had to kept smaller than 0.001 seconds which led
to a huge grid for our choice of the system size and evo-
lution time. We then moved to Runge-Kutta method
(RK4), where we could do the simulations with a time
step of 0.1 seconds. To generate infinite temperature ini-
tial states we generate an array of random numbers be-
tween 0 and 2π and use them as the polar and azimuthal
angles of the spins. To introduce the perturbation we
increase the polar angle of the spin at site 0 by ϵ = 0.001
radians. The interaction strengths parameters are indi-
cated in the corresponding figures. We average over 1000
initial state realisations for figures 4 and 5, and over 5000
realisations of the initial state for 3.

MATRIX PRODUCT STATES

The ground state of local Hamiltonians follow and area
law of entanglement entropy. The entanglement entropy
of a generic bipartition scales as the boundary of one of
the two regions. A matrix product state is an ansatz for
the ground state of such a Hamiltonian in one dimension.
In Penrose’s tensor network notation, a matrix product
state is

|Ψ⟩ = . (21)

We are going to use this notation in rest of the discus-
sion, the block are tensors and the legs are the indices.
For example the inner product between two MPS is given
by

⟨Ψ]|Ψ⟩ = . (22)

TIME EVOLUTION OF MATRIX PRODUCT
STATES

The time evolution of a quantum state under a Hamil-
tonian H is given by

U(δt) |Ψ⟩ = e−ιHδt |Ψ⟩ (23)

where δt is the time step, we have set ℏ = 1. This is
just a matrix exponentiation. Once we have the time
evolution matrix we can act it on the state to obtain
the time evolved state. However for many body systems
the Hilbert space dimension and hence the dimension of
the Hamiltonian grows as 22N , where N is the number
of particles in the system. This makes the Hamiltonian
extremely large for even small systems. Computing the
eigenvalues and eigenvectors of such a large matrix is not
possible for current computers. The exponentiation of

such a large matrix remains intractable even for very ef-
ficient sparse matrix inversion algorithms. In the follow-
ing section we review two approaches to time evolution
of matrix product states.

Time Evolving Block Decimation

Time evolving block decimation (TEBD) is an algo-
rithm that approximates U(δt). This algorithm works
well for short range interacting systems. The main idea
behind the algorithm is to write

U(δt) = e−ιH1δte−ιH2δt |Ψ⟩ (24)

where H = H1 + H2 is the original Hamiltonian. Note
that this can be done, if H1 and H2 commute. Con-
sider an MPS as discussed in the previous section and an
MPO (matrix product operator) of the system’s Hamilto-
nian, using the above prescription we contract appropri-
ate terms of the MPO, with the action of the Hamiltonian
on the MPS reduced to

, (25)

we contract the indices to obtain a rank four tensor

, (26)

which can we support vector decomposed to

, (27)

which is an MPS. So we have obtained the time evolution
of an MPS and also managed to retain its tensor network
structure.

Time Dependent Variational Principle

In the time dependent variational principle we do not
calculate the matrix exponential but rather the action of
U(δt) on |Ψ⟩ directly. The main idea behind the algo-
rithm is to variationally minimise the the distance be-
tween H |Ψ⟩ and |∂tΨ⟩, i.e. we are taking a guess MPS
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FIG. 6. Lightcone structure of the out-of-time order corre-
lator for the transverse field Ising model with only nearest
neighbour interaction. The time evolving block decimation
algorithm was used for this calculation. A clear lightcone
boundary is observed. The boundary is linear. This is in ac-
cordance with the Lieb-Robinson bound in short-range quan-
tum spin systems. The values of the OTOC inside the light-
cone however is a bit puzzling, it appears as if lost information
is recovered after sometime. It is highly likely that this will
vanish upon averaging over many initial state realizations.

from the one-site tangent space of the initial MPS and
variationally minimize this to obtain the time evolved
state. In the tensor network language one component of
this equation that can be written as

− , (28)

where the blue block is the Hamiltonian and the top
blocks on top of the Hamiltonian is the MPS in its canon-
ical form. This equation has to be minimized to obtain
the time evolved state. The canonical form of an MPS is
the when one part of the MPS is left normalised and the
other part is right normalised, with an active site sepa-
rating the two parts. The active site in not normalised.
The solution of this equation gives the time evolved state
in the tangent space of the initial MPS.

In the preceding two sections we have followed the dis-
cussion in [6] and the book ‘Principles of Quantum Com-
putation and Information’ by Benenti, Casati, Rossini
and Strini.

TRAVERSE FIELD ISING MODEL

The motivation for this project was to understand the
OTOC lightcone in long-range interacting quantum sys-
tems. In the previous sections we have seen the behaviour
of the decorrelator in short-range classical systems. We
expect a similar behaviour for a short-range quantum sys-
tem. For classical spin systems our model of choice was
the nearest neighbour Ising model. For quantum spin
systems our model of choice is going to be the transverse
field Ising model. The model Hamiltonian is

H = −J
N−1∑
i=0

σx
i σ

x
i+1 − g

N−1∑
i=0

σz
i (29)

where J and g are the nearest neighbour and magnetic
field interaction strengths, respectively. Note that this
is the simplest possible interacting quantum spin model.
Removing g from this model does not work as the corre-
sponding model does not evolve in time.
To study the lightcone in long-range quantum systems,

we take a naive approach. We increase the interaction
range of the model one spin at a time. In particular, we
study two models with next-nearest and next-next near-
est neighbour interactions. The Hamiltonian for next-
nearest model is

H2 = −
N−1∑
i=0

(
J1σ

x
i σ

x
i+1 + J2σ

x
i σ

x
i+2

)
− g

N−1∑
i=0

σz
i (30)

and the next-next nearest model is

H3 =−
N−1∑
i=0

(
J1σ

x
i σ

x
i+1 + J2σ

x
i σ

x
i+2 + J3σ

x
i σ

x
i+3

)
(31)

− g

N−1∑
i=0

σz
i . (32)

We compute the σzσz OTOC given by

C(r, t) = ⟨Ψ|σz
r (t)σ

z
0(0)σ

z
r (t)σ

z
0(0) |Ψ⟩ (33)

where σz
r (t) is the time evolved local Heisenberg opera-

tor at site r at time t and σz
0(0) is the local operator at

site 0 at t = 0. The results are shown in figure 6 and
7. The lightcone structure for the next-nearest and next-
next nearest models are as expected. However, for the
nearest neighbour model the obtained results seem to in-
dicate similar behaviour inside and outside the boundary
of the lightcone. It appears as if there is no information
scrambling inside the lightcone boundary. This might as
well be a result of not averaging over many realisations
of the initial state.

Simulation details. We use TEBD and TDVP for the
nearest neighbour model. For the next and next-nearest
neighbour models we only use TDVP. TenPy library is
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FIG. 7. The lightcone structure of the OTOC using time-dependent variational principle. (a) For the nearest neighbour model
as described by H. This is in accordance with the results obtained for the TEBD case. (b) For the next-nearest neighbour
model as described by H2, the lightcone structure emerges with a higher velocity than in the nearest neighbour case. The
boundary remains linear. (c) For the next-next nearest neighbour model as described by H3. The lightcone boundaries are
already flat for 33 spins. To understand the lightcone better we need to do the simulation for larger number of spins but it is
highly unlikely that the lightcone boundary would be linear.

used for all the calculations. One hindrance is that there
is no way of computing the time evolution of an operator
in this library. So to compute the OTOC we first initialise
an MPS in ferromagnetic configuration. We make two
copies of this MPS. Then on one of the copies we apply
σz
0(0) to the MPS. This state is evolved backwards in

time. σr(0) is applied on the backward evolved state.
This state is then forward evolved in time by and equal
amount. Say this copy was |ψ⟩ so the procedure described
above yields

eιHtσz
r (0)e

−ιHtσz
0(0) |ψ⟩ . (34)

We first evolve the other copy backwards in time, then
apply σz

r (0), forward evolve this state for the same time
and finally apply σz

0(0) on it. Say this copy was |phi⟩,
then the above procedure yields

σz
0(0)e

ιHtσz
r (0)e

−ιHt |ϕ⟩ (35)

The OTOC is then just the inner product of these two
states

C(r, t) = ⟨ϕ|ψ⟩ . (36)

We consider 33 spins-1/2 particles on a 1D lattice. We
evolve the system for 7.5 seconds in case of nearest neigh-
bour model with TEBD and for 2.5 seconds in case of
TDVP. For both the TDVP and TEBD simulations we
take a time steps of 0.5 seconds. We set all the interac-
tion strength parameters to 1 in all of our simulations.
The truncation parameters for both TEBD and TDVP
are the same. We use a maximum bond dimension of
100 and error threshold during SVD decomposition was
set to 10−12. We use the two site TDVP engine for our
simulations. We do not average over initial state realisa-
tions.

SUMMARY AND OUTLOOK

We studied the dynamics of the decorrelator in Kauff-
man cellular automaton using Monte Carlo simulations.
It was observed that the velocity of the perturbation de-
pends on the number of neighbours responsible for time
evolution. Also different regimes of dynamics was ob-
tained for high and low p. We then moved on to study the
effect of local perturbations in classical spin systems. We
integrated the equations of motion using Runge-Kutta
(RK4) and finite element method. To go beyond near-
est neighbour interaction we systematically add next and
next-next nearest neighbour interaction to our Hamilto-
nian. We compute the decorrelator for various combi-
nations of interaction strength parameters. We obtain
lightcone structure in the decorrelator of all of these sys-
tems. This highlights that even though there is no classi-
cal Lieb-Robinson bound, there is still an emergent Lieb-
Robinson bound on the velocity of perturbations in clas-
sical systems. This emergent bound seem to vanish with
increasing interaction range and strength. For quantum
spin systems, in close analogy with our analysis of classi-
cal spin systems, we chose the transverse field Ising model
for our study. Just like in the classical case we systemati-
cally added next and next-next nearest interaction to the
system. We computed the σzσz OTOC for these models.
We use both TEBD and TDVP algorithm for the nearest
neighbour case. For the other models we only use TDVP.
We see the OTOC lightcone emerging in these systems.
It was observed that the operator spreading was fastest
in the next-next nearest neighbour model while the slow-
est in the nearest neighbour model. We could not play
around with the interaction strength parameters of these
models as each lightcone computation is very expensive.
In our approach we have to do the time evolution for
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each point of the grid. In fact all of our simulations
suffer from the problem of being very slow. In case of
Monte Carlo simulations while the individual steps are
quick we have to average over a large number of initial
realisations to obtain good results, which becomes ex-
pensive, parallelising this computation would require a
good GPU for efficient implementation. Even the TenPy
codes are optimised for GPU implementation. Further
for the quantum simulations instead of time evolving the
MPS we could instead time evolve the MPO. This would
make the OTOC computations much quicker. There are
dedicated algorithms for MPO evoution including TEBD
and TDVP versions for MPO [7]. With better computa-
tional resources it would be nice to explore the transverse
field Ising model with further interactions and different
interaction parameters. In particular corresponding to
the parameters which show non-trivial behaviour in the
classical regime. It would also be nice to compare and
contrast classical and quantum information scrambling.
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